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Starting with the idea that, besides conformational energy barriers, surface contacts are responsible for both 
conformation and 'free' volume distribution, a new concept is developed to describe the glass transition in 
compatible polymer blends. An extended Gordon-Taylor equation results if both the effective contact 
probabilities of the blend components and the effect of molecular surroundings on the contact contribution to 
the glass transition of the blend are considered. Free volume redistribution due to surface contacts is 
included. The Gordon-Taylor constant K of the relation obtained is now not a fitting parameter, but is 
related to the ratio of the different expansion coefficients of the free volume. The relation introduces two 
fitting parameters, Kt and K2, which are related to the intensity of polymer-polymer interaction and to the 
effect of immediate molecular surroundings on the interaction. Data analysis suggests that these fitting 
parameters are not only polymer-specific, but also molecular-weight-dependent. 
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INTRODUCTION 

Compatible polymer blends exhibit a single glass 
transition temperature. Experimental studies on the 
composition dependence of the glass transition 
temperature Tg, performed on a variety of binary 
compatible polymer blends, have shown both negative 
and positive deviations, as well as S-shaped Tg vs. 
composition curves. 

Two types of empirical equation have been used 
successfully to describe monotonic Tg deviations from 
additivity. One is the Gordon-Taylor equation1: 

T,I +Kw2) (1) 

where K is a parameter adjusted to give the best fit, and 
the other is the Jenckel-Heusch 2 equation: 

Tg=wl Tgl'k-wzTg2 wb(Tg2- Tgl)WlW2 (2) 

with b as a constant selected to optimize the fit. The 
parameter b accounts for the different heaviness of the 
weight fractions, w i, of the components in the glass 
transition range. The quadratic term was introduced by 
the authors to account for specific interactions existing in 
the mixture. For  the same reason, Kwei 3 extended the 
Gordon-Taylor  equation by a quadratic term of the form 
q w x w  2. A two-parameter fitting equation was the result. 

Equation (1) is the expression commonly used for glass 
transitions, not only of polymer mixtures, but also of 
random copolymers 4. It can be derived either by applying 
to polymer mixtures the thermodynamic approach of 
continuity at T~ of both entropy and excess mixing 
entropy or of volume and excess mixing volume 5 or by 
considering the continuity and the additivity rule at Tg of 
the volume 6. 
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The problems that arise using the thermodynamic 
approach of continuity at T 8 of the entropy or volume of 
the mixture are discussed by Goldstein 7 and need no 
further comments in the present context. The continuity 
and the additivity of the volume at Tg will therefore be 
preferred in the following. 

Recently it has been shown that the Gordon-Taylor 
equation can be rearranged into an additivity relation, 
whereas the Kwei equation can be transformed into a 
two-term virial expression, by using volume fractions, 
weighted for different thermal expansion of the 
components s. It has also been demonstrated that Tg 
curves, especially of unsymmetrical shape, are more 
accurately reproduced if, beside the quadratic term, a 
third-power term is also used. 

In the case of binary mixtures, quadratic and third- 
power concentration terms in virial equations are 
obviously related to contact probabilities of the 
components and thus account for the interaction between 
the components of the mixture. 

Because of relatively small entropy contributions, 
interactions are considered essential for com- 
patibilization in polymer blends. The surface contacts 
between components will thus contribute most to both 
the conformational mobility and the 'free volume' 
distribution, and consequently to the value of the glass 
transition temperature of compatible polymer blends. 

Starting from these basic observations a new concept of 
describing the glass transition in compatible polymer 
blends will be presented. Contact probabilities and 
related specific stored energies for each type of 
contact between the components of the blends will be 
used in this approach. 



THEORETICAL APPROACH 

For reasons of simplicity the following approach will not 
sprit the contact contribution into interaction-specific and 
component-specific parts. Such a differentiation will be 
presented, however, in a subsequent publication. 

Assuming that 'free volume' distribution and thus also 
conformational mobility in polymer mixtures are 
dependent on the specific interactions of the components, 
the glass transition temperatures of compatible polymer 
blends depend on the frequency of both homo- and 
hetero-molecular contacts in the mixture. In accordance 
with the lattice theory of regular solutions applied to 
polymer systems, the overall number of contacts is 
constant and the number of each contact type is related to 
the respective volume fraction instead of to the mole 
fraction 9. Considering the contribution of direct surface 
contacts only, the following relation will be valid for the 
dependence of mixture properties on composition: 

P = E l l ( 1 - O ) 2 + 2 E 1 2 ( I - O ) O + E 2 2  ~2 (3) 

where • stands for the volume fraction of the polymer 
component with the higher Tg. 

The parameters E associated with homo-molecular 
contacts, Ell and E22, and with hetero-molecular 
contacts, E12 , account for the contribution of each 
contact type to the average property per contact, P. In 
terms of the Flory-Huggins theory 9, P is defined by the 
relation 

P = P*/!2z(N 1 + N2) 

with P* an extensive property of the system, z the lattice 
coordination number, i.e. the number of first neighbours 
to a given lattice site, and N t and N 2 the numbers of lattice 
sites occupied by the respective components: N 1 +N 2 
then represents the total number of lattice sites. 

If P is assumed to be the glass transition temperature, 
the physical meaning of E turns into that of a critical 
thermal energy stored in the respective contact. This 
energy :is exceeded a t  ~ ,  thus allowing conformational 
rearrangements, accompanied by an increase of the free 
volume. This critical thermal energy E depends, however, 
not only on the enthalpic contact-specific interaction, but 
also on component-specific characteristics, especially on 
conformational energy barriers. 

It should be pointed out that (3) does not account for 
the influence of molecular surroundings on the contacts. 
Thus the parameters E depend only on the type of 
contact. 

The boundary conditions of (3) applied for the 
composition dependence of the glass transition 
temperature of the mixture are: 

for O=0, P=Tg 1 i.e. E l l =  Tg 1 

for • = 1, P = Tg2 i.e. E22 = T~2 
(4) 

Rearranging, (3) transforms into: 

( T ~ -  T~I)/(Tg 2 - T g l ) =  (P-ElO/(E22 -E11 ) 
=(1+K1)O-  K1 O2 

with 

K 1  = [ 2 E 1 2  - ( E l l  + E22)]/(E22 - El  1) 

= [2E12 - ( E l l  + E22)]/(Tg2 - -  Tg I ) 

(5) 
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The condition of additivity: 

T g = ( 1  - ~ ) ) T g  I -+ (I)Tg 2 i .e.  ( T ~ -  Tgl)/(Tg 2 - T g l ) = O  
(6) 

holds for K I = 0 ,  i.e. the contribution of 'hetero- 
molecular' contacts is the mean of that of the 'homo- 
molecular' contacts: 

2E12 = E l l  + E 2 2  

It is evident that K 1 accounts for deviations from 
additivity due to the difference between the contributions 
of the hetero- and the respective homo-molecular 
contacts to the glass transition temperature of the blend. 

Conceived for the thermodynamics of polymer 
solutions, the Flory-Huggins theory also yields relations 
with only a single fitting parameter, the 'interaction 
parameter' Z. But it is well known that X is influenced by 
the composition of the solution and both first-order 10 and 
second-order dependences 11,12 of Z on solution 
composition have been proposed. The 'equation-of-state' 
theory 12 predicts a quadratic dependence of • on the 
interaction parameter. 

The concept of considering the effect on Tg of the binary 
contacts only, without accounting for the effect of the 
molecular surroundings on the contacts, is an idealized 
approach, which applies only for zero or for very small 
enthalpic interactions of the components of the mixture. 
Thus, for a more realistic model, it seems necessary to 
extend the Flory-Huggins theory by considering in 
addition at least the effect of the immediate molecular 
surroundings of the binary contacts. 

The influence of the molecular surroundings on binary 
contacts is denoted as follows: 

e i j  ~ =- elj_kyij 

(i = j  or i4=j and k--i or k =j) 

(7) 

with Yu the number of possible immediate molecular 
neighbours of the surface contact point between the 
components i andj. Here e' represents the influence of an 
individual molecular unit of the neighbouring component 
k, whereas e represents the overall effect of an exclusive k 
neighbourhood on the ij contact interaction. 

Applying this approach to a binary miscible mixture, 
equation (3) transforms into: 

P=(1-O)2[E11 +(1-O)ell_x +Oell 2] 

+ 20(1 - O)[E 12 + (1 - O)e 12-1 "+ Oel 2-2] 

+ • 2 [E22 + (1 - O)e 22_1 + Oe22 2] (8) 

By rearranging (8), the significance of the contact 
parameters E and the effect of the neighbouring 
characteristics e may be shown as: 

P = (1 - ~)2 [(Ex 1 + e l  1-1 ) + (e l  1-2 --  e l  1-1 )(I)] 

+ ~(1 - O){ [(E 12 + el 2-1) + (el 2-2 - el 2-1)~] 

+ [(El 2 + el 2-2) "~ (e, 2-1 - -  el 2-2)( 1 - -  0 ) ]  } 

+ 02 F(E22 + (?22-2) + (e22-1 - -  e22-2)( 1 --  O) ]  (9) 
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The sum Ei~_~ = E ,  + e,_~ characterizes the contribution 
to the property P of the homo-molecular contact in its 
own neighbourhood, i.e. the property of the pure 
component i, whereas the difference e*_j=e,_g-e,_~ 
represents the effect on this contribution of substitution in 
the neighbourhood of the contact of the i units byj  units. 
The parameter e* includes also free volume redistribution 
due to surface contacts. These impact parameters are then 
multiplied by the respective volume fraction of the second 
component to account for the probability of such 
substitution. The hetero contacts in (8) may be considered 
either in the exclusive neighbourhood of the first blend 
c o m p o n e n t ,  E12_ 1 =E12+e12_1, or of the second 
c o m p o n e n t ,  E12_ 2 = E 1 2  +e12_ 2. For both cases the effect 
of substitution of one component by the other in the 
neighbourhood of a hetero contact is taken into account 
by  e*2_ 1 -----e12_ 1 --e12_ 2 and e~'2_2=e12_2--e12_l, re- 
spectivdy. The probability of such substitution results by 
multiplying these magnitudes with the corresponding 
volume fraction. It is evident that e*2_ 1 ----- --e*2_ 2. 

Equation (9) becomes then: 

P = (1 - ~)2(E 11-1 -~- e'1_2@) + (1 - ~)~((E 12-1 "Jr e'2-2~) 

+[E12_  2 q-e~2 1(1 - -  ( I ) ) ] )  +~2[E22 2 + e~'2_1(1 - ( I ) ) ]  
(10) 

Assuming as before that P is the glass transition 
temperature, the only difference from the simpler 
formulation of (3) is the supposed composition 
dependence of the contact energy parameters. 
Accordingly the Eo_ k parameters of (10) (i= i or i=j and 
k=i or k=j) represent that fraction of stored 
thermal energy in an ij contact located in a k 
neighbourhood which is overcome at the Tg of the blend. 
The respective e*a parameters (l=k and l=i or l=j) 
represent the variation of this energy as a result of the 
substitution of the k neighbourhood by an l 
neighbourhood. 

The boundary conditions of (8) to (10) applied for the 
composition dependence of the glass transition 
temperature of the mixture are, respectively: 

for O=0, P=TsI i.e. Ell_l=E11+elI_l=Tgl 
(11) 

for ~ = 1 ,  P=Tg 2 i.e. Ezz_z---E2z+ez2_2=Ts2 

By rearranging (10) into the form of (4) one obtains: 

(Tg - Tgl) /(Tg 2 - T g l ) =  (1 + K I ) ~ - ( K  1 +K2)(I}2 +K2~ 3 

with 

K1 = [ (El  2-1 - -  E11-1) + (El  2-2 - -  E22-2) 

+ (e 2_1 + - 

K2 = (2e'2-1 + e~'1-2 - e~'2-1)/(T~ - T~I) 

i.e. 

K2 = [(e'2_1 + e'1_2) - (eT2_2 + e~2_l)]/(Tg2 - T g l )  

03 )  

An attempt to illustrate the physical content of the 
parameters included in the brackets of the constants K 1 
and K2, respectively, is shown in Figure 1. Accordingly, 
the constants K x and K 2 are composed of differences 

KI: 

Ei 2-  I E l  i - I  E l2 -  2 E 2 2 - 2  

+ 
6=12-1 6= 12-2 e l l - 2  6= I I -  I 

[ @ - @ 1  • 
6=1"2-1 

e l2 - I  6=12-2 e l l _  2 6=Bol 

%-, 6=;'1-2 
e l 2 - 2  e l2 .1  e22-1 e 2 2 . 2  

I@  I@@1 
6= 2-2 e z_L 

Figure 1 Illustration of the binary contact contribution and of the 
effects of surroundings of extreme molecular arrangements as they are 
included in the constants Kt and K2 of equation (12). Dark hatching 
indicates if contact contribution or surrounding effects are considered 

between extreme molecular arrangements; K 2 depends 
exclusively on the influences of changes in the 
neighbourhood of the binary contacts, whereas K 1 has a 
more complex meaning. K1 depends on both the contact 
contributions (critical thermal energies) and the influence 
of changes in the neighbourhood upon the contact 
contribution. 

The condition of additivity holds this time for both 
K1 = 0 and K 2 = 0. The condition K2 = 0 assumes uniform 
effects of the molecular surroundings for all contact 
interactions, i.e. all differences included in K 2 and shown 
in Figure I become zero. K 1 = 0 can be analysed only ifK 2 
is already zero. Then the same condition of additivity 
results as for (5). 

This means that irrespective of whether the effects of 
molecular surroundings are considered or not, volume 
additivity for the glass transition temperature of 
compatible binary polymer mixtures is always given by 
(6), i.e. 

The volume fraction for volume additivity condition, 
• , refers to the respective glass transition temperature of 
the polymer blend, T~, and therefore will be temperature- 
dependent in the range of validity of (6). To define the 
volume fraction for the volume additivity condition the 
method suggested by Kovacs 6 can be used, which 
accounts for the different fractional free volume 
expansion coefficients of the blend components1 a. Taking 
into account the experimental difficulties encountered in 
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volume fraction determination, generally weight fraction 
equations are preferred. 

As Gordon and Taylor have suggested I, weight 
fractions for assumed volume additivity can be 
introduced directly by taking into account the continuity 
at T~ of the specific volumes. 

Applying these suppositions to the specific volume of 
the blend at the Tg of the blend, the following expression 
will be valid: 

/)Tg ~--- (W1/)m,1 "[-W2Um,2)Tg=(Wll)g.1 "[-W2Vg,2)Tg (14) 

with v~,~ = 1/p:,,~ the specific volume of component i, and 
w~ the respective weight fraction (x=m or x = g  stands for 
melt or glassy state). 

The specific volumes of the components at the glass 
transition temperature of the blend can be expressed in 
the following manner: 

(Vm,i)Tg = (Vm,i)TgiE1 "}- 0~m,i(Tg --  Tg/)] 

and (15) 

G , , ) ~ ,  = ( v ~ . , %  [ I  + ~, , , (T~ + T , , ) ]  

By introducing these expressions in (14) and taking into 
account the continuity of the specific volume at Tg, i.e. 

(1)m,i)Tg i -~ (1) g,i)Tg i 

relation (17) is obtained: 

(16) 

w](vl)Tg,AO~l(Tg- Tgl)=w2(v2)Tg2Ao~2(Tg2- rg) (17) 

By using the notation 
K = (V2)T,2Atx2/(Vl)T, IAC(1 = p1Atx2/p2Ao~I (Pi is the density g $ . 
of the component t at Tg~) for the ratio of the expansion 
coefficients of the free volume, (17) transforms into 

(Tg- Tg,)l(Tg 2 - Tgl)=Kwzl(W , + Kw2) (18) 

This expression is identical with both the Gordon- 
Taylor equation (1) and with the additivity expression (6) 
for the glass transition temperature of a compatible 
polymer mixture. 

The constant K can be expressed in terms of the Tg of 
the components by assuming the validity of the Simha- 
Boyer rule ~ 4, A~Tg = 0.113, '0.133' being a 'universal' 
constant: 

K = p, Tg,/p2Tg 2 --- K'(Tg 1/T~ 2 ) (19) 

K' accounts for the value of the ratio of the densities, 
P~/P2, and for the possible deviations from the 'universal' 
value of the Simha-Boyer constant. 

Introducing the above expression of the constant K, 
into (18), the following relation results: 

Tg = [w ,  Tg, + K'(Tg,/Tg2)w2Tgz]/[w , + K'(Tg,/Tg2)w21 
(20)  

As polymers have generally very similar densities, K' 
will show only small deviations from unity. The most 
likely value of K' is assumed to be in the range of 0.8 to 
1.2. An appropriate correction is recommended, however, 
if the polymer components have very different densities. 

In the above form (20) is restricted to the volume 
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additivity condition, the constant K=K'(Tgt/Tg 2) no 
longer being a fitting parameter, in contrast to the 
original Gordon-Taylor relation (1). 

The validity range of (20) for assumed volume 
additivity is illustrated in Figure 2. It is evident that the 
effective value and the range of the constant K is 
determined first by the value of the ratio of the densities 
and the validity of the Simha-Boyer rule, but depends 
also on the glass transition temperatures of the two 
components of the blend. 

For K '=  1, (20) transforms into the well known Fox 
relation ~ 5: 

(lIT,) = (w ,IT,, ) + (w dT,~) (21) 

which can be considered the 'idealized' equation for the 
glass transition temperature of the polymer blend under 
the volume additivity assumption. 

It is interesting to note that the same relations (20) and 
(21) result if one assumes the thermodynamic approaches 
of continuity at Tg of either the volume or of the entropy 
or enthalpy ~6. In the latter two cases, however, the second 
Simha-Boyer rule, ACpTg= Kc. ~7 is used. 

A reformulation of (12) in (erms of weight fractions 
finally results in the expression: 

(T ,  - T , , ) / ( T ~  - T~,) 

--- (1 + K,){[K'(TgllTc2)w2]/[w I + K'(T'gllTg2)w2] } 

--(K, + Kz){[K'(Tgi/Tgz)W2]/[w I + K'(Tg,/Tgz)W2]} 2 

-'l'-K2([K'(Tgt/Tg2)W2]/[w I -'{'- K ' (Tg l / t g2 )w2 ]  ) 3 (22) 

where {[K'(Tg,/Tg2)w2]/[w , + gt(Tgl/Tg2)W2] } represents 
the corrected weight fraction of the component with the 
higher Tg. 

As (22) is applied either for K~ ¢ 0 and K2 = 0 (a Kwei- 
like equation) or for both K~ ~0  and K2¢0,  volume 

420 

34O 

i.... °' 

28O 

- ' ~ ' " ~ -  "< '7  ~/ . _ ~ - ~ - 6 . s  / ~.~> / /  
" 
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. - / . ~  0.8 / A j / /  
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/ "  " "/./0m 8 

~ 7 "  
/ . y -  

22o0 ' o'.z ' o14 ' 0'.6 ' 0'.8 ' ~.o 
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Figure 2 Representation of the validity range of the Gordon-Taylor  
equation (20) restricted for volume additivity condition. The most likely 
range of the K '  value is indicated on the curves. Dotted lines represent 
the Fox relation (21) for K = Tgl/Tg 2 
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additivity is no longer assured in this case. As mentioned 
the proportionality constant K' may vary in the range 
between 0.8 and 1.2 and as a consequence K will oscillate 
around the value of T~ffT82. The value TgffTg 2 is thus, 
however, a good approximation for K. 

Subsequently our own experimental and literature Tg 
data for miscible polymer blends will be analysed and 
discussed in view of (22). 

RESULTS AND DISCUSSION 

The quality of equation (22) applied to experimental Tg 
data of compatible polymer blends results by analysing 
the examples illustrated in Figures 3 to 6. In these figures 

the fitting possibilities of both the original Gordon- 
Taylor equation (1) with K an arbitrary fitting parameter 
and the extended equation (22) are compared. The curves 
always show the computed optimum fits, in the case of 
(22) with the K' values ranging from 0.8 to 1.2. It is 
obvious that the modification of the K' value in the range 
mentioned does not affect the fitting quality of (22). No 
essential differences are observed in comparison with the 
'ideal' value of K ' =  1, which means in accordance with 
(19) a Gordon-Taylor constant K = (TgffTg2). The values 
of the parameters K1 and K2 depend, however, on the 
choice of the K' value, as will be shown below. 

Excluding the PS/PPO blends, which are shown in 
Figure 3, the examples presented reveal that experimental 
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Figure 6 Composition dependence of the glass transition temperature of blends of Novolac and poly(methyl methacrylates) (PMMA) of different 
tacticity. (Data of Kwei3.) See Figure 3 

Tg data of miscible polymer blends can generally not be 
fitted by using the original Gordon-Taylor equation in a 
satisfactory manner, even if extreme K parameters are 
used which differ widely from the Tgl/T~2 value. The 
failure of the Gordon-Taylor equation is thus obvious. 

The fitting quality is much improved by using the 
extended equation (22)  which introduces two 
supplementary parameters, K~ and K 2. Unfortunately 
the number of Tg vs. composition data for a given polymer 
blend is too small to discern an optimum K' value. 

The impact of the K' variation on K~ and K2 is 
evidenced in a K~ vs. K 2 representation in Figure 7. The 
arrows indicate the sense of variation of the fitting 
parameters K1 and K2 for values of K' ranging from 0.8 

to 1.2. The points correspond to the ideal value of K' = 1. 
Indifferent to the chosen K' value, the general tendency of 
the K1 vs. K 2 plot is preserved and thus for simplicity 
Figure 8 includes only the data for K ' =  1. 

The analysis of these tendencies on the background of 
the contributions illustrated in Figure 1 suggests that the 
Kz parameter correlates predominantly with the intensity 
of the hetero-molecular contact interaction of the 
components of the blend. Correspondingly the respective 
values for the charge-transfer interaction between the 
electron-donor and electron-acceptor polymers PHECM 
/PDNBM are much higher than for the less intensive 
interacting PVME/PS blends. High K 1 values are 
obtained also for Novolac/PMMA blends which are 
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on the K' value. The notations represent the molecular weights of PVME/PS blend components in thousandths. The 
letters B indicate Tg data of Bank et al. 2° and K of Kwei et al. 2~ The notations on the PHECM/PDNBM-n  blends 19 
indicate the number of C atoms in the hydroxyalkyl sequence of PDNBM 
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Figure 8 K1 vs. Kz representation of the fitting parameters of equation 
(22) for K'--  1. Molecular weights of the blend components are indicated 
in thousandths. The letters P indicate data of Prest and Porter 22 and K 
of Kwei and Frisch 23. The latter are also analysed by Couchman 24. (Pet- 
MS stands for poly(ct-methylstyrene) 

characterized by their ability to form hydrogen bonds 3. 
Concerning the K 2 parameters it is interesting to note 

that for the PVME/PS blends the values are generally 
higher the lower the molecular weight of the more rigid 
polymer component PS. This tendency is confirmed also 
by data for the PS/PPO blends, where PPO is the more 
rigid component, as shown in Figure 8. 

The specific influence of the molecular weight of the 
more rigid polymer component is also observed if the Tg 
vs. composition data of the PVME/PS blends are 
analysed with respect to the molecular weights of the 
components. From Figure 9 it is evident that the shapes of 
the Tg vs. composition curves are essentially influenced by 
the molecular weight of the more rigid PS component. 

The observed variation of the K 2 parameters in the 
PHECM/PDNBM-n blends with the length of the 
hydroxyalkyl spacer suggests that K 2 may reflect some 
orientation effects. Better interaction results with the 

longer spacer length because of increased decoupling 
from the chain backbone• 

A more detailed discussion of the significance of these 
two fitting parameters K1 and K 2 will be presented in a 
second paper. 

CONCLUSIONS 

The model presented in this paper concerning the 
composition dependence of Tg of compatible polymer 
blends makes use of the concepts of polymer solution 
thermodynamics. As applied to Tg, the approach is in fact 
a static one, which is surely acceptable because of the 
relative molecular immobility of the glassy state. 

The energy parameters E (for the binary contact 
interaction) and e (for the influence of the molecular 
neighbourhood on the binary contacts) characterize the 
glassy state, i.e. its ability to transform from the glassy to 
the rubbery state. The result is a third-power equation 
with respect to the concentration of the more rigid 
polymer component. This equation describes satisfac- 
torily the composition dependence of Tg of several 
miscible polymer blends. The fitting parameters 
introduced have well defined physical meanings and offer 
interesting possibilities for the interpretation of 
intermolecular interactions. 
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